A generalized poincaré index formula

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elliptic Complexes and Generalized Poincaré Inequalities

We study first order differential operators P = P(D) with constant coefficients. The main question is under what conditions a generalized Poincaré inequality holds D(f − f 0) L p ≤ C Pf L p , for some f 0 ∈ ker P. We show that the constant rank condition is sufficient, Theorem 3.5. The concept of the Moore-Penrose generalized inverse of a matrix comes into play.

متن کامل

Generalized Schwinger Mass Formula

We generalize Schwinger’s original mass formula to the case of an additional isosinglet which mixes with the nonet mesons, by considering the corresponding 3×3 mass matrix in the most general case. We then make further generalization to either (i) an arbitrary number of additional isosinglets mixing with nonet mesons, or (ii) an arbitrary number of mesons with common J mixing with an additional...

متن کامل

The Generalized Tilt Formula

A convex hull consmaction in Minkowski space defines a canonical cell decomposition for a cusped hyperbolic n-manifold. An algorithm to compute the canonical cell decomposition uses the concept of the 'tilt' of an n-simplex relative to each of its (n 1)-dimensional faces. An essential tool for computing tilts is the tilt theorem. The tilt theorem was previously known only in dimensions n < 3, a...

متن کامل

Generalized Poincaré–Bertrand formula on a hypersurface

a r t i c l e i n f o a b s t r a c t The Poincaré–Bertrand formula concerning two repeated Cauchy's principal integrals on a smooth curve in the plane is generalized to identities of singular integrals on smooth hypersurfaces in higher dimensions. Published by Elsevier Inc.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology

سال: 1968

ISSN: 0040-9383

DOI: 10.1016/0040-9383(68)90002-5